How to calculate the Quantum Efficiency through the SolarPVsoft application?

The first functionality of the application allows to calculate the integrated current density from the external quantum efficiency in an interval of wavelengths. Ideally, this value corresponds, in case that the wavelength intervals wide enough, to the current density yielded by the solar cell under a solar simulator with 1 sun intensity (see <u>Theoretical Background</u>)

Within this application, you choose the way you are going to introduce the data, either through the (1) Quantum Efficiency itself as a function of the wavelength or (2), alternatively, via the current density of a reference photodiode. In both cases you have to select the appropriate units (percentage or parts per one).

(1) Through the Quantum Efficiency

Once the captcha is correctly written, you can upload the file with the data, in .dat or .txt format, like in the picture below (without letters, gaps or 0 as values).

The first column is the wavelength in nm, and the second one is the value of the quantum efficiency in percentages or parts per unit (depending on what you have chosen). In addition, you should select the wavelength range by indicating the initial and final values of the wavelength. After that you can click on "Calculate".

Here an example for a perovskite solar cell. You can download this <u>example file</u> directly from the **SolarPVsoft** website, with the quantum efficiency in percentage units:

External Quantum Efficiency, 22.1% KRICT/UNIST perovskite solar cell (https://onlinelibrary.wiley.com/doi/full/10.1002/pip.2788)

300	33.787234
311	29.319149
320	27.021277
330	31.361702
341	39.659574
349	50.382979
360	58.936170
371	68.255319
382	74.127660
391	78.212766
400	79.489362
411	81.531915
420	81.914894

Download this file in your local directory and then select it to upload the data into the application:

Upload your data				
Choose the value measured O Efficiency O Curren	ıt			
Choose the unit measured O Hundred percent O	Parts pe	r unit		
Initial and last wavelength (nm) chosen to measure	300	$\hat{\cdot}$	800	\sim
Captcha CHALLER				
OPUM				
Upload your values				
Examinar Perovskite.txt Upload				
*Please upload files in ' <i>txt'</i> or ' <i>dat'</i> extension				
Return Home				

After pressing "upload" you should get confirmation that the file has been correctly uploaded:

You can now press "Calculate" to carry out the calculation. This is the result

A quick inspection of the results shows that the integrated current has not reached a *plateau*, meaning that not all available photons have been included in the calculation. We can go back (press "Start over") and extend the calculation to 850 nm (the quantum efficiency file which is given as example has data until 849 nm). This is the result, which confirms that the integrated current has indeed saturated:

This is an example from a TiO_2 cell sensitized with RK1 dye using ACN-based electrolyte:

Note that in this case the quantum efficiency is smaller and drops significantly beyond 600 nm. Consequently, the integrated current is almost a half of the value obtained for the perovskite cell considered above. The current also saturates at shorter wavelength values.

(2) Through the Current Density of reference photodiode

In this case, the procedure is similar, but 3 files are needed: Current Density values (mA/cm^2) measured for the solar cell in the specified wavelength (nm) interval, Current Density values measured for the photodiode use as reference, and, finally, the responsivity values of the photodiode in terms of power or irradiance to current. These are data corresponding to the same TiO₂ cell considered before:

Cell	Current Density	Photo	diode Current Density	Photo (Spect	diode Calibration tral Response)
360	0.0001998390	360	0.0000447365	360	0.04197
3/0	0.0002249180	3/0	0.00004/3/63	370	0.04197
200	0.0002200320	200	0.0000491927	380	0.04462
400	0.0002190990	400	0.0000528557	390	0.04993
410	0.0002914560	410	0.0000847254	400	0.05656
420	0.0004491690	420	0.0001148324	410	0.00585
430	0.0004988700	430	0.0001462787	420	0.07513
440	0.0004855220	440	0.0001929716	430	0.08575
450	0.0007194620	450	0.0002755040	440	0.09050
460	0.0008306930	460	0.0003788450	450	0.11750
470	0.0011480990	470	0.0004314610	400	0.1282
480	0.0008661760	480	0.0004264930	480	0 14147
490	0.0009248460	490	0.0004444770	490	0 14943
500	0.0007792920	500	0.0003771990	500	0 16004
510	0.0006852450	510	0.0004031080	510	0.17331
520	0.0007109480	520	0.0004339580	520	0.18127
530	0.0007605430	530	0.0004739840	530	0.19321
540	0.0007781710	540	0.0004964540	540	0.20515
550	0.0008105620	550	0.0005380400	550	0.21311
560	0.0008369450	560	0.0005726310	560	0.22637
570	0.0008799920	570	0.0006137490	570	0.23699
580	0.0009087940	580	0.0006667470	580	0.2476
590	0.0009084700	590	0.0007074040	590	0.25821
600	0.0008493500	600	0.0007198430	600	0.26883
610	0.0007871190	610	0.0007682530	610	0.28077
620	0.0006822520	620	0.00084/6200	620	0.29271
630	0.0004936890	630	0.0008620990	630	0.30598
640	0.0003114020	640	0.0008486100	640	0.31792
650	0.0002398090	650	0.000905/150	650	0.3272
670	0.0001404170	670	0.0009132870	660	0.34047
680	0.0002130990	680	0.0009809231	670	0.35374
600	0.0001720756	600	0.0010393030	680	0.361/
700	0.0001/20/30	700	0.0009710450	690	0.3/496
710	0.0001535564	710	0.0012368390	700	0.38425
720	0.0001623131	720	0.0010170800	710	0.39619
730	0.0001277403	730	0.0013333410	720	0.40946
740	0.0000914889	740	0.0012903920	730	0.4214
750	0.0001246245	750	0.0012415070	740	0.43000
760	0.0001421864	760	0.0014333370	750	0.44393
770	0.0001040257	770	0.0008408520	770	0 46252
780	0.0001534941	780	0.0006837880	780	0 47579
790	0.0001334789	790	0.0007671650	790	0.4864
800	0.0001632451	800	0.0008060410	800	0.49436

By default, *power* is the main option, but in case *irradiance* is used, just click the irradiance box and introduce the cell dimensions in cm^2 . The files must be in .txt or .dat format like the picture above shows (without letters, gaps or 0 as values).

The results are the same as we obtained with the "Quantum efficiency" option:

The results of the Current Density obtained by different ways are shown below.

Current Density				
J _{sc} Solar Simulator	J _{sc} Integrated Current	J _{sc} SolarPVsoft EQE		
11.6 (mA/cm ²)	11.9 (mA/cm ²)	12.2 (mA/cm ²)		